Select Page
Japan launches a $8.5 million project to study 2.5D materials

Japan launches a $8.5 million project to study 2.5D materials

Japan’s Ministry of Education, Culture, Sports, Science and Technology has launched a collaborative project to develop 2.5D materials. The project, titled “Science of 2.5 Dimensional Materials: Paradigm Shift of Materials Science Toward Future Social...

Researchers succeed in synthesizing single layers of hexagonal boron nitride on graphene

A research team led by the University of Michigan has developed a reliable, scalable method for growing single layers of hexagonal boron nitride on graphene. Graphene-hBN structures can power LEDs that generate deep-UV light, which is impossible in today’s LEDs,...

Graphene helps track the nanomotion of bacteria

A team of researchers from TU Delft, led by dr. Farbod Alijani, recently managed to capture the low-level noise of a single bacterium using graphene. Being able to pick up on the miniscule sounds of bacteria can help track if an antibiotics is working, or if the...
Korean researchers fabricate nitrogen and sulfur co-doped graphene nanoribbons for enhanced potassium batteries

Korean researchers fabricate nitrogen and sulfur co-doped graphene nanoribbons for enhanced potassium batteries

A research team, led by Professor Yu Seung-ho of the Department of Chemical and Biological Engineering at Korea University, Seoul National University’s Professor Yuanzhe Piao and Sogang University’s Professor Back Seo-in, has fabricate nitrogen and sulfur...

Researchers detect ‘twistons’ that assist the magic angles necessary for superconductivity in trilayer graphene

Researchers from Columbia University, Harvard University, Japan’s National Institute for Materials Science and Austria’s University of Innsbruck have studied the structural and electronic properties of twisted trilayer graphene using low-temperature...

Researchers develop electrically tunable graphene device to study rare physics

An international research team, led by The University of Manchester’s National Graphene Institute (NGI), has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum,...